Cari ragazzi e cari lettori, continuo il filone relativo ai nessi e alle relazioni tra Matematica e Musica, che ha riscosso il vostro interesse, in passato, dedicando questo post alla Geometria della Musica e alle bellissime curve di Lissajous.
Il sommo filosofo e matematico Leibnitz scrisse un giorno: <<La musica è un occulto esercizio aritmetico dell’anima nostra inconsapevole di numerare>>.
Il legame tra la musica e la matematica in generale, infatti, è molto intimo. Vi basti sapere, per ora, che ad ogni nota misicale corrisponde un ben determinato numero: il numero delle vibrazioni al secondo, cioè la frequenza, del corpo che emette quel suono; ad ogni accordo (insieme di due note, che dà una sensazione gradevole) corrisponde un ben determinato rapporto numerico: il rapporto delle frequenze di quelle due note.
Ma la musica non è solo aritmetica. Essa è anche geometria!
I diapason sono dei semplici strumenti, a forma di U, che, vibrando, emettono una nota musicale. Consideriamone ora due, disposti uno orizzontalmente e l’altro verticalmente, su ciascuno dei quali è attaccato uno specchietto e facciamo in modo che un raggio luminoso si rifletta successivamente sui due specchietti e vada poi a colpire uno schermo, formando un punto luminoso se i due diapason non emettono alcun suono e quindi non vibrano.
Se i due diapason emettono una stessa nota (cioè hanno uguali le frequenze, il cui rapporto è quindi 1 : 1), sullo schermo si forma, a seconda che siano o meno verificate altre particolari condizioni, una circonferenza luminosa, oppure una ellisse, che può essere sempre più schiacciata, fino a diventare un segmento.
Se i due diapason emettono due note il rapporto delle cui frequenze sia 1 : 2, si hanno figure come quella a lato.
Altre ancora se ne possono ottenere considerando altri valori di quel rapporto.
Queste bellissime curve, di cui solo alcune fra le più semplici sono state rappresentate sopra, si chiamano curve di Lissajous, dal nome del fisico francese che se ne occupò. Esse possono ben considerarsi l’espressione geometrica dell’armonia musicale.
E adesso alcuni link utili sulle figure di Lissajous:
***
POST CORRELATI
- Pitagora ascoltò la musica dei pianeti
- Tra Musica e Matematica: Le Variazioni Goldberg
musica e matematica....che straordinario, non si finisce mai di imparare!
RispondiEliminacCiao Annarita, ho aggiunto i tuoi link tra i siti amici.
un salutone
elisa
A proposito di musica e scienza, mi ha affascinato questa notizia:
RispondiEliminahttp://www.corriere.it/sportello-cancro/articoli/2008/07_Luglio/31/ramoni.shtml
ciao, Daniele
Elisa carissima, grazie del link! Mi fa un enorme piacere essere tra i tuoi siti amici.
RispondiEliminaUn abbraccio e a presto:)
annarita
Caro Daniele, grazie mille della segnalazione. Ho letto con molto interesse la notizia: veramente bella l'idea degli scienziati del MIT. Ho fatto lo share dell'articolo sul mio tumblr.
RispondiEliminaUn caro saluto e a presto:)
annarita
Caro Pier Luigi, sono io a ringraziare te per le ghiottissime informazioni che ci offri. Più che un commento il tuo è un post!
RispondiEliminaUn figlio filosofo, che insegna estetica nella musica all'università, eh? Sicuramente impegnativo...non potresti segnalarci qualche suo lavoro? Appunti, documenti, link...quel che hai a disposizione, insomma. Giusto per conoscerlo un pochino...
Hai letto il post sulle variazioni Goldberg, su questo blog?
Un abbraccione:))
annarita
Bach e' uno dei miei autori preferiti, unitamente a Mozart, per restare ai classici.
RispondiEliminaIo studio, leggo, scrivo ascoltando i cncerti Brandeburghesi di Bach, le sinfonie di Mozart.
In quei momenti, non ascolto canzoni perche' le parole mi distraggono, anche se applicando tecniche di meditazione riesco ad astrarmi dal mondo circostante.
Rossina, per rispondere alla tua domanda, io i tuoi post li bevo, li mangio, nutrono la mia mente. Spesso mi costringi a fare ricerche per capire gli argomenti esposti, qualche volta non capisco, soprattutto quando si tratta di aspetti scientifici, e gia' una volta ti ho detto che se ti avessi a portata di mano ti avrei ... strozzata.
Grazie per i consigli e per i tuoi commenti ai miei post.
RispondiEliminaVale PL
ma che carino questo post... molto belle le immagini, ma la matematoca non è il mio forte :(
RispondiEliminaPier Luigi, anch'io adoro Bach e Mozart. Mio padre mi ha allevata con la loro musica...
RispondiEliminaIn quanto al fatto che segui i miei post con tanta attenzione, non posso che esserne lusingata...
Per fortuna che la lontananza fisica mi protegge;)
Abbracci
annarita:)
Ciao Renata. Interessante la simulazione che segnali:)...nessun suono anche per me.
RispondiEliminaBuone giornate anche a te...
Un sorriso:)
annarita
Giovanna carissima, che piacere sentirti. Ho letto sul tuo blog che il lavoro ha un ritmo intenso, in questo periodo...
RispondiEliminaPer quanto riguarda la matematica, non è il forte di tanti, purtroppo;)
Questo non ti impedisce di affezionarti un po' ad essa. Che ne pensi?
Abbracci
annarita:)
Annarita, potresti essere mia nipote.
RispondiEliminaUn abbraccio.
PL
...Tua nipote! Non esageriamo!;)...E poi non mi riferivo a quel tipo di difesa. Hai parlato di volermi strozzare, a volte!
RispondiEliminaA presto:)
annarita
La musica è matematica e fisica oltre a tante altre cose.
RispondiEliminaAnche geometria ovviamente.
I suoni dipendono da un determinato numero di vibrazioni al secondo che l'orecchio conta.
I rapporti tra i suoni sono matematici come già Pitagora se ne accorse.
Sui miei siti musicali per esempio su quello dedicato al pianoforte o all'improvvisazione musicale parlo spesso di questo fondamentale elemento.
Ciao